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Abstract

■ Our environment contains temporal information unfolding
simultaneously at multiple timescales. How do we learn and rep-
resent these dynamic and overlapping information streams? We
investigated these processes in a statistical learning paradigmwith
simultaneous short and long timescale contingencies. Human
participants (n=96) played a game where they learned to quickly
click on a target image when it appeared in one of nine locations,
in eight different contexts. Across contexts, we manipulated the
order of target locations: at a short timescale, the order of pairs of
sequential locations in which the target appeared; at a longer
timescale, the set of locations that appeared in the first versus
the second half of the game. Participants periodically predicted
the upcoming target location, and later performed similarity

judgments comparing the games based on their order properties.
Participants showed context-dependent sensitivity to order
information at both short and long timescales, with evidence of
stronger learning for short timescales. We modeled the learning
paradigm using a gated recurrent network trained to make imme-
diate predictions, which demonstrated multilevel learning time-
courses and patterns of sensitivity to the similarity structure of
the games that mirrored human participants. The model grouped
games with matching rule structure and dissociated games based
on low-level order information more so than high-level order
information. The work shows how humans and models can
rapidly and concurrently acquire order information at different
timescales. ■

INTRODUCTION

The environment contains temporal dependencies that
unfold simultaneously at multiple timescales. For exam-
ple, a baseball fan can anticipate the trajectory of a just-
pitched ball as well as the switching of jerseys in the field
between the top and bottom half of each inning. To fully
represent, simulate, and anticipate changes in the environ-
ment, humans must learn these concurrent temporal
dependencies. Learning at multiple timescales has been
documented in a variety of domains, including language
(Saffran & Wilson, 2003), event segmentation (Shin &
DuBrow, 2021; Davachi & DuBrow, 2015), planning
(Momennejad, 2024; Lee, Aly, & Baldassano, 2021), motor
learning (Krakauer, Hadjiosif, Xu, Wong, & Haith, 2019),
and visual statistical learning (Karuza, Kahn, Thompson-
Schill, & Bassett, 2017; Schapiro, Rogers, Cordova, Turk-
Browne, & Botvinick, 2013). Our study adds to this
literature by testing whether humans can rapidly learn
simultaneous regularities occurring at multiple timescales.
In particular, we explore how sensitive humans as well as
neural network models are to slow background statistical
dependencies when they are focused on making short-
term predictions in the immediate task at hand.
Studies on statistical learning of auditory content

(language and music) suggest that multiple timescales of
temporal statistics can be rapidly acquired under at least

some circumstances. For example, infants can learn transi-
tion probabilities among both syllables (Saffran, Aslin, &
Newport, 1996) and pairs of syllables (“words”; Saffran &
Wilson, 2003) after only a few minutes of exposure. More-
over, infants and adults are sensitive to nonadjacent
dependencies among nonsense words within a single
learning session (Misyak, Christiansen, & Tomblin, 2010;
Gómez, 2002), and adults can learn higher order statistics
among tones after a mere 5 min of exposure (Furl et al.,
2011). In these cases, higher order learning is often
modulated by the salience of embedded fast temporal
statistics. For example, the presence of high adjacent tran-
sition probabilities impedes acquisition of nonadjacent
dependencies (Gómez, 2002), raising the possibility of
attentional trade-offs for statistical learning at different
temporal scales. Indeed, when intervening sounds are
of a different type from those related through a nonadja-
cent dependency, the dependency becomes easier to
learn (Creel, Newport, & Aslin, 2004; Newport & Aslin,
2004). It is unknown whether these differences are
needed when the higher order dependencies unfold at
a slower timescale (more than a few seconds), where they
may be less likely to be confused with the short timescale
information.

In the visual, spatial, and motor domains, humans rap-
idly learn short temporal dependencies across a variety of
paradigms in under an hour of exposure (Krakauer et al.,
2019; Fiser & Aslin, 2002). However, many paradigms
showing sensitivity to longer timescale statistics appearUniversity of Pennsylvania
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to involve extensive training. For example, givenmany ses-
sions of training, participants in visuospatial search and
visuomotor learning tasks are able to use temporal context
going back at least three trials to anticipate the upcoming
target location (Cleeremans & McClelland, 1991; Lewicki,
Czyzewska, & Hoffman, 1987). Similarly, in the motor
learning literature, after extended training, shuffling previ-
ously learned motor chunks results in a decrement in per-
formance relative to intact sequences, consistent with
learning of higher-level order among the chunks (Sakai,
Kitaguchi, & Hikosaka, 2003). It is unclear whether there
are contexts in which simple but slow visuospatial or
motor statistics can be acquired rapidly, and whether the
presence of faster temporal dependencies interferes with
learning of slower visuospatial or motor regularities.

We report the results of a preregistered study in which
humans learned nested temporal dependencies at fast and
slow timescales in a visuo-spatial motor learning task
inspired by the carnival game “whack-a-mole.” Participants
played different mini-games of whack-a-mole in which the
temporal dependencies among target locations on differ-
ent trials varied. Participants were periodically asked to
predict the upcoming target location. They were also
asked to judge the similarity of the different mini-games
on the basis of their temporal structure (both fast and
slow). Using the results from both the prediction task
and the similarity judgment task, wewere able to track par-
ticipant learning over time and assess whether both slow
and fast timescale dependencies were being learned
within a single session. We predicted on the basis of our
pilot data that participants would be able to learn both
timescales of dependencies, with an advantage for the
more immediate fast timescale.

We simulated performance on our behavioral tasks
(online predictions and posttraining similarity judgments)
using a gated recurrent neural network with a single hid-
den layer. We trained themodel to predict the subsequent
target location, using input stimuli generated in the same
way as our human behavioral experiment, and evaluated
to what extent the model became sensitive to longer time-
scale dependencies over training, and its degree of match
to the human behavioral data.

METHODS

Human Behavioral Methods

Participants

One hundred three participants were recruited for course
credit or monetary compensation from the University of
Pennsylvania participant pool. We obtained informed con-
sent from all participants in accordance with the University
of Pennsylvania institutional review board. Participants
were native English speakers with normal/corrected-
to-normal vision and hearing. We used preregistered
exclusion criteria as follows: (1) similarity judgment task
attention check accuracy below 70%; (2) during gameplay,

missingmore than 25% of responses; (3) during gameplay,
not responding on any trial for two consecutive games or
more. Following these criteria, seven participants were
excluded and replaced, leaving our final predetermined
sample size of 96 participants (aged 18 to 59 years, mean =
25.2 years, 14 participants were over age 30 years, five par-
ticipants did not disclose their age). Our target sample size
was determined by power analysis of a smaller pilot exper-
iment (n= 32) using measures derived from the similarity
judgment task described further below, with the simr
package powerSim, indicating that power was over 95%
for all key contrasts (without correction for multiple com-
parisons). Preregistered methods are available at https://
archive.org/details/osf-registrations-egukx-v1.

Materials

Participants played eight mini-games of whack-a-mole.
Eachmini-game contained a distinctive background image
(similar to a game board or arena) and a thematically
related target image (always an animate object;
Figure 1). Both the background and target images were
in cartoon style. Background images were all covered with
gridlines of similar size, and a gray semitransparent overlay
was used to delineate the arena during gameplay. The
following background and target images were used for
the eight minigames: (1) background: desert with skulls
carved into a plateau, target: skull; (2) background: forest
temple, target: fairy; (3) background: desert with pyramid
structure and pond, target: camel; (4) background: forest
with blossoming cherry trees, target: animate cherry blos-
som with face; (5) background: snowy temple with bridge
and large statues, target: yeti; (6) background: terraced
land with large mushrooms, target: animate mushroom
with face; (7) background: underground river and rock
formation with crystals, target: bat; (8) background: medi-
eval encampment, target: dragon. The order of locations
in which the target image appeared in each game was
counter-balanced across participants, such that no
background/target image pair was consistently associated
with any set of order rules. Participants were given an addi-
tional practice game in which the target appeared in
completely random locations. The background and target
images used for this game were distinct from those used
during training, and consisted of a swimming pool and a
goldfish.

Procedure

Exposure to games. Participants were informed that
they would play a series of mini-games similar to whack-
a-mole. They were asked to pay attention to how similar
themini-games were to each other and informed that they
would answer questions comparing the games afterward.
They were particularly asked to pay attention to the order
in which the target appeared during the games, and differ-
ences in that order among the games. Participants played
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each of eight mini-games once per round in a series of
eight rounds. Participants received points for their perfor-
mance and could view the point total for each game during
that game, and their overall point total after each game.
Each mini-game began with a slide that introduced the
background of the game (e.g., a drawing of a snowymoun-
tain temple scene with gridlines over it) and the target
image that they needed to click (e.g., a cartoon yeti),
which was superimposed on the background. During
each mini-game, a board was displayed with nine dark
circles overlaid on it that resembled “holes”: one center
hole and eight holes evenly spaced on the periphery in a
circular arrangement. During each trial of the game, a target
image appeared in one of the nine holes and the participant
had to click on the target before it disappeared to receive 25
points. The time limit to receive points was 800 msec after
target onset. If they did not click the target in time, they
heard a laughing noise and did not receive any points. Par-
ticipants were informed before playing the games that the
laughing noise indicated that they were too slow. Clicking
the target ended the trial. If the participant did not click
the location that the target appeared in, the trial ended
2200 msec after target offset. The intertrial interval was
500 msec (from the end of one trial to the appearance of
the target in the next trial).

Game structure. Each game lasted 27 trials. Games were
divided in a 2× 2 design by adopting one of two high-level
order rules (slow timescale) and one of two low-level order
rules (fast timescale; Figure 1). Two of the eight games
were assigned to each combination of high- and low-level
order rules. The eight peripheral (noncenter) target loca-
tions were randomly partitioned into two sets of four
peripheral locations. High-level order rules governed
which set (A or B) was used for target locations in the first
half of the game; in the second half of the game, the target
appeared in the remaining set of locations. Locations were
also grouped into ordered pairs such that if one peripheral
location was visited on a given trial, the target would
appear in the second location on the following trial
100% of the time. Low-level order rules governed the

second location in each of the four ordered pairs of loca-
tions. The second location of each pair was swapped
across games with different low-level order. Before pre-
senting each ordered pair of locations, the target appeared
in the center. By separating pairs of locations with inter-
leaved center location trials, we ensured that participants
were not able to rely solely on the current stimulus to
predict the first item in each pair, and must keep track
of temporal information. In the middle of each game,
the target appeared in the center three times in a row to
help form an event boundary separating the first and
second half of the game. Thus, although only eight pairs
of peripheral locations were presented in each game (16
trials), 27 trials were presented in each game including the
center location.

All participants were assigned to a unique randomized
list of games, belonging to one of 16 counterbalancing
groups. Counterbalancing groups were designed such
that each game stimulus was assigned to each of the
four joint order conditions (H1L1, H1L2, H2L1, H2L2) an
equal number of times across lists. Each game stimulus
shared its high-level or low-level order condition with
each other game stimulus an equal number of times
across the counterbalancing. The order of presentation
of paired associate locations within each half of the game
was randomized. Two pairs were presented twice in each
half of gameplay (the remaining two pairs were pre-
sented twice in the second half ). The games were played
in “rounds” of eight such that each mini-game was played
once per round. The order of the games within a round
was randomized.

Prediction probe trials. During gameplay, participants
were periodically probed on their order knowledge by
explicitly predicting the upcoming target location. During
probe trials, the eight peripheral locations were covered
by a “?” and the participant had to select where they
thought the target would appear next (barring the center
hole). Responses were self-paced. Each probe trial was
followed by a 1000-msec delay and then by an ordinary
game trial that provided participants with feedback on

Figure 1. Experiment design. (A) High- and low-level order rules were manipulated within participants in a 2 × 2 design. (B) High-level order
determined the set of target locations encountered in the first versus second half of the game. Low-level order determined which paired associations
were encountered among the target locations on adjacent trials during the game.
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their predictions. There was one prediction probe trial
each time a game was played, except for the final round,
when there were three probe trials per game. Prediction
probe trials occurred throughout the game at all noncen-
ter positions but were more likely to appear as the second
trial in the game (37.5% of the time and then roughly
evenly distributed across the remaining trial numbers
and positions). Participants received 750 bonus points
each time they selected the actual target location.
Depending on when the trial appeared within the game,
the maximum possible accuracy was either 50% (for the
first location in an ordered pair) or 100% (for the second
location in an ordered pair).

Similarity judgment task. After playing the games, par-
ticipants judged the similarity of the games in a two-
alternative forced-choice task. Participants were presented
with a picture representing one game at the top and were
asked which of two games presented at the bottom was
more similar to the game at the top. Figure 1A displays
the full set of stimuli presented to represent the games.
All participants were asked to base their judgments on
the order of locations in the games. They were randomly
assigned to one of two conditions for finer grained instruc-
tional wording (48 participants per condition): In Condi-
tion 1, they were told to base similarity on “when/where
the target appeared,” and in Condition 2, they were told
to base similarity on the “sequence of locations [the] tar-
get appeared in.” We predicted based on initial pilot data
that instructions condition would modulate sensitivity to
low-level order on the similarity judgment task; specifi-
cally, we expected greater sensitivity to low-level order
in instructions Condition 2.

Similarity judgments were performed on distinct trial
types: (a) Attention check. One choice was the same game
as the comparison game (with the same target image).
This trial type was used for performance-based exclusion.
Example (using game ID numbers from Figure 1A):
target = 1, left = 1, right = 5. The image on the left is
the same as the target image, so choose left. In all exam-
ples below, the left choice would be the more correct one
(except (g)). (b) Same rules (but different game identity /
target image) versus game with different high- and low-
level order condition. Performance on this trial type may
reflect sensitivity to either low- or high-level order infor-
mation. Example: target = 1, left = 2, right = 8. (c) Same
rules versus game with different low-level order condition.
Above-chance accuracy would reflect sensitivity to low-
level order information. Example: target = 1, left = 2,
right = 5. (d) Same rules versus game with different
high-level order condition. Above-chance accuracy would
reflect sensitivity to high-level order information. Exam-
ple: target = 1, left = 2, right = 4. (e) Both low- and
high-level order differ versus only high-level order differs
from the comparison game. Above-chance accuracy
would reflect sensitivity to low-level order information.
Example: target = 1, left = 4, right = 8. (f ) Both low- and

high-level order differ versus only low-level order differs
from the comparison game. Above-chance accuracy would
reflect sensitivity to high-level order information. Example:
target = 1, left = 5, right = 8. (g) One game matches the
comparison game on low-level order, and the other
matches the comparison game on high-level order. This
trial type assesses bias toward relying on high- versus low-
level order information when making similarity judgments.
Example: target = 1, left = 4, right = 5.

Analysis

Logistic regression models were fit with the glmer function
using the lme4 package in R. Nested model comparisons
with the anova function were used to test for significant
effects. The emmeans package was used for statistical
reporting of condition means. Reported p values are uncor-
rected except where specified.

Online prediction judgments. Following our preregis-
tered analysis plan, we fit logistic regression models to
assess indices of sensitivity to high- and low-level order
information and their change over time. Low-level sensitiv-
ity was assessed using responses to probes at the second
location among paired locations. It was computed as: [Pro-
portion congruent with low-level order rule] – [Proportion
congruent with opposite low-level order rule]. High-level
sensitivity was assessed using responses to probes at the
first location among paired locations. It was computed
as: [Proportion congruent with high-level order rule] –
[Proportion congruent with opposite high-level order
rule]. This was equivalent to subtracting the proportion
of trials with responses drawn from the incorrect set of
four locations, given the game rules and game half, from
the correct set of four locations. High-level sensitivitymea-
sures were also computed separately using only the first
noncenter trial of each game. Responses to the first non-
center trial in each game indexed sensitivity of location
predictions to the target and context image. Our full
model used the following formula in R notation:

model ¼ glmerðprediction congruent with rule

∼ timeþ 1jparticipantð Þ þ 1jgame idð Þ;
family ¼ “binomial”Þ

Here, time was indexed as the number of individual
27-trial games played since the beginning of the session,
divided by 100 to aid with parameter estimation. We
included crossed random intercepts for participant and
game identity (which of the eight games was being played,
in terms of the target and context image; because game
positions were assigned to random locations for each
unique participant, there was no reason to anticipate
consistent effects of rule condition across participants).
Separate models were fit for modeling sensitivity to the
high- and low-level rules. Reduced models excluding
time as a variable were used to assess mean performance
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across the entire session. Nested model comparisons
were used to assess the presence of an interaction
between sensitivity and time.

RTs. We also examined RTs during ordinary trials that
did not contain prediction probes. Given the large num-
ber of possible target locations, however, we found that it
was difficult to distinguish between RT changes driven by
overall familiarity with the task/game structure and
context-specific sensitivity to low- and high-level order
rules. We thus focused on accuracy measures in our
analyses.

Similarity judgments. We fit a logistic regression model
to the similarity judgment data, including trials that tested
high-level order knowledge, low-level order knowledge,
or both, with the following formula in R notation:

model ¼ glmerðcorrect ∼ instructions

* trial type indicesþ 1jitemð Þ þ 1jsubjð Þ;
family ¼ “binominal”Þ

The variable trial_type_indices was a factor with three
levels coding whether a trial type was an index of sensitiv-
ity to high-level order, sensitivity to low-level order, or sen-
sitivity to both; thus, the high- and low-level order levels
were each aggregated across two different original trial
types, in which one option matched the target on either
both or neither dimension. We tested for the significance
of fixed effects of interest using the emmeans package and
nested model comparisons. We also ran a second logistic
regression model and evaluated its output in the same
way, but with disaggregated trial types (i.e., a five-factor
model of trial type with a factor for each of trial types
b–f above). We also separately examined performance
on Trial Types (a) (attention check) and (g) (pitting
high- and low-level order information against each
other).

Modeling Methods

Architecture

A gated recurrent unit model with a single hidden layer
(n = 48 model instances) was trained to predict the
upcoming location in a whack-a-mole task with identical
statistical properties to the human participants. We chose
this architecture for its ability to effectively learn long time-
scale dependencies (Shewalkar, Nyavanandi, & Ludwig,
2019). Like humans, the model was probed on its perfor-
mance on location prediction and judgments of similarity
among the games. The model had a 1 × 17 input layer, a
1 × 150 layer of gated recurrent hidden units (Chung,
Gulcehre, Cho, & Bengio, 2014), and a 1 × 9 output layer
(Figure 5A). Adjacent layers were fully connected. The 1 ×
17 input vector consisted of eight context units denoting
the one-hot encoded game ID and 9 one-hot encoded
location units (representing one center and eight

peripheral target locations). Gated recurrent units learn
weights to generate a candidate hidden activation based
on their input and their own previous activation, and then
separately learn how much to integrate the candidate hid-
den activation with the previous activation (again based on
both the input and the previous activation) to generate
their output. The model was implemented in Python
3.6.10 using keras tensorflow (tensorflow version 2.1) with
default fitting parameters and a mean squared error loss
function in batches of eight games at a time (equivalent
to a single round of exposure to all eight games). Activa-
tions were reset in between games. The effective learning
rate was adjusted automatically over training using the
RMSprop optimizer to speed convergence. Error was
computed by comparing the predicted location encoded
in the 1 × 9 output vector against the actual subsequent
location.

Training

Models were trained via Backpropagation Through Time
on sequences generated using the same randomization
and counterbalancing procedures as human participants,
for 240 rounds of games. Preliminary examination sug-
gested that the model performed similarly to human par-
ticipants on prediction and similarity judgment tasks after
receiving approximately 5 times the exposure that human
participants did (40 rounds of games), given a default
global learning_rate parameter of 0.001. Presented analy-
ses probe themodel after 5 times human exposure, unless
otherwise specified. Separatemodel instances were initial-
ized with random weights as follows: Connection weights
between layers were taken from a Glorot uniform distri-
bution (Glorot & Bengio, 2010), recurrent weights were
computed from an orthogonal matrix derived from an ini-
tial random normal matrix, and bias weights were initially
set to zero.

Analysis

Online predictions. At various stages of training, weights
were frozen and the model was asked to predict the next
location at the same probe points as the human partici-
pants on a number of trials (172,800 trials over 800 rounds
of the eight games). Max activation of the output units was
used to determine the most likely predicted location. The
same sensitivity measures were derived as for humans:
low-level sensitivity, and high-level sensitivity at the earli-
est probe point in each game. Gaussian noise was applied
to all 17 input units before making a prediction. Several
noise levels were assessed (0.01, 10, and 0.1–2.0 in incre-
ments of 0.1), and a Gaussian with a standard deviation of
1.0 was determined to best correspond to human data. To
create stable performance estimates, performance was
averaged over 10 injections of noise.

In addition to comparing the model’s performance to
human behavior, we also examined its underlying
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predictive mechanisms using additional online prediction
tests. We used Layer-wise Relevance Propagation (LRP) to
estimate to what extent trials at different lags in the past
influenced model predictions (Appendix A). We also
assessed whether high-level sensitivity in particular is
explainable based on recent past input. To this end, we
tested whether the model could apply the high-level rule
correctly at the start of the second half of gameplay, and
whether our mid-game event boundary marker (four cen-
ter location trials, rather than one) was a sufficient cue to
obtain high accuracy at that point. Thus, we checked high-
level accuracy of the trained model on the first noncenter
trial of the second half of gameplay. To simulate elimina-
tion of preceding context, we also checked high-level
accuracy on the first noncenter trial at the start of novel
games that began their first half with four center trials,
rather than one. We did not apply noise for these assess-
ments, and we ignored output activation for the center
location (analogous to participants not having the option
of selecting the center location).

Similarity judgments. After training,model weights were
frozen and the model was exposed to inputs such that a
single game ID unit was turned on and all other input units
were off. Activation of the model’s hidden units was com-
pared across games using Pearson correlations as a metric
of distance. The model was then asked to compare games’
similarity using trials generated in the same way as for
human judgments. A softmax function was used to deter-
mine the probability of each choice based on its relative
distance to target (temperature = 1), and we sampled
from the probability distribution 10 times for each trial
to generate probabilistic choice data and then took the
average performance across trials for each trial type and
model instance. Trial types were analyzed analogously to
the human data.

Activation trajectories. Hidden unit activations were
recorded during gameplay. The average hidden activation
vector was taken across all rounds for each game ID and
trial (from 1–27 during the game) for eachmodel instance.
Then distance matrices between all the averaged activity
vectors were computed for each model instance, and the
distance matrices were averaged across model instances.
Multidimensional scaling (in two dimensions) was applied
to the final aggregate distance matrix using the sklearn.
manifold.MDS function from the scikit-learn package
(version 0.24.2) in Python (version 3.6.10) with default
parameters, and the resulting mean activation trajectories
over the course of gameplay were plotted.

RESULTS

Human Behavior

Online Predictions

Following our preregistered analysis plan, we fit logistic
regressionmodels to the online predictiondata (Figure 2A).
In our assessment of high-level sensitivity, participants
were above chance at predicting locations from the cor-
rect half of the game (earliest probe point: mean = .266,
SE = 0.060, Z ratio = 4.424, p < .001; all probe points:
mean = .525, SE = .053, Z ratio = 9.891, p < .001) and
did so more often later in training, although not signifi-
cantly so when only the earliest probe point was consid-
ered (earliest probe point: β = .310, SE = .195, χ2

1 =
2.525, ns; all probe points: β = .410, SE = .150, χ2

1 =
7.492, p = .006). Participants were also more likely to
select the appropriate second location in a pair than the
location corresponding to the opposite low-level order
rule (β= .892, SE= .112, Z ratio = 7.953, p< .001). Again,
this trend increased over the course of training (β=1.605,
SE = .326, χ2

1 = 24.204, p < .001).

Figure 2. Online performance measures of learning in human participants. (A) Sensitivity to high- and low-level order information plotted by round
of eight games over the course of training. Shaded regions indicate bootstrapped 95% confidence bands. (B) Participants demonstrated sensitivity to
high- and low-level order rules in their online predictions of upcoming locations during the second half of training. Box plot midlines show the mean,
and error bars indicate upper and lower quartiles, **p < .01, ***p < .001.
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Aggregating across the second half of training, humans
were above chance on our measures of both low- and
high-level sensitivity, low-level sensitivity: mean = .298,
t(95) = 8.073, p < .001; high-level sensitivity (all trials):
mean= .264, t(95) = 9.305, p< .001; high-level sensitivity
(earliest trial in game): mean = .142, t = 4.222, p < .001
(Figure 2B). High-level performance was higher measured
across all trials than at the earliest trial in game, difference=
.122, t(95) = 5.550, p < .001. The earliest trial in game, or
“earliest probe point,” refers to the first noncenter loca-
tion trial, or the second absolute trial in each game.
Low-level performance did not differ from high-level
performance across all trials (difference = −.034, t =
−.947, ns). However, low-level performance (across all
trials) was higher than high-level performance at the ear-
liest trial in game (difference = .155, t(95) = 3.295, p =
.001).
Overall, participants learned to predict locations in a

manner indicating sensitivity to both low- and high-level
structure, with some evidence for stronger low-level
sensitivity.

Similarity Judgments

Instructions for the similarity judgment task were manip-
ulated such that half of the participants were asked to
judge similarity based on “when/where” the target
appeared, and half were asked to judge based on the
“sequence of locations” that the target appeared in. Perfor-
mance was marginally better when participants were
asked to base their judgments on “when/where” the target
appeared, rather than the “sequence of locations” (three
trial type scheme: β = −0.255, SE = .134, χ2

1 = 3.509,
p= .061). Adding an interaction term between instruction
condition and 3-way trial type—high, low, or both—did
not improvemodel fit (χ2

2= 2.081,ns). We specifically pre-
dicted based on pilot data that instructions condition
would modulate sensitivity to low-level order on the sim-
ilarity judgment task, and this was not born out (χ2

1= .127,
ns). Thus, we collapsed data across instructions condition
for subsequent analyses.
Using logistic regression as per our preregistered analy-

sis plan, but now collapsing across instructions condition,
human participants were above chance on trials indexing
sensitivity to low-level order and to both low- and high-
level order combined (low: β= .207, SE= .053, Z ratio =
3.938, p< .001; both: β= .278, SE= .068, Z ratio = 4.096,
p < .001). They were only marginally above chance on
trials indexing sensitivity to high-level order (β = .088,
SE = .052, Z ratio = 1.674, p = .094). Participants had
higher accuracy on trials that probed low-level sensitivity
than on trials that probed high-level sensitivity only (high
vs. low odds ratio = .888, SE = 0.0378, Z ratio = −2.793,
adjusted p = .015; both vs. high odds ratio = 1.209, SE =
.0732, Z ratio = 3.142, adjusted p= .005; p values adjusted
by the Tukey method). Trials that probed low-level

sensitivity did not differ in accuracy from trials reflecting both
high- and low-level sensitivity (both vs. low odds ratio =
1.074, SE = .065, Z ratio = 1.177, ns).

Broken down further by trial type (five-way scheme),
participants were above chance on all trial types except
for one measure of high-level sensitivity (“two different
rules vs. same high-level rule”): (b) both same rules versus
both different rules, estimated mean probability correct =
.569, SE = .0166, Z ratio = 4.094, p < .001; (c) same rules
versus low level different, estimated mean probability
correct = .563, SE = .0167, Z ratio = 3.718, p < .001; (d)
same rules versus high level different, estimated mean
probability correct = .535, SE = .0168, Z ratio = 2.074,
p = .038; (e) both different rules versus only high level
differs, estimated mean probability correct = .546, SE =
.014, Z ratio = 3.250, p = .001; (f ) both different rules
versus only low level differs, estimated mean probability
correct = .515, SE = .0141, Z ratio = 1.088, ns.

Participants showed high accuracy on (a) the attention
check, mean = .970, t(95) = 77.125, p < .001, and were
significantly biased toward using low-level order informa-
tion when high- and low-level information sources were
directly pitted against each other (Trial Type g; mean =
.458, t=−2.543, p= .013). The t tests corresponding with
Figure 3 are reported below for each trial type: (b) Same
rules (but different game identity / target image) versus
game with different high- and low-level order condition,
mean = .564, t(95) = 3.451, p < .001. (c) Same rules ver-
sus game with different low-level order condition, mean=
.558, t(95) = 3.268, p = .002. (d) Same rules versus game
with different high-level order condition, mean = .532,
t(95) = 1.804, p= .074. (e) Both low- and high-level order
differ versus only high-level order differs from the compar-
ison game, mean = .543, t(95) = 2.678, p= .009. (f ) Both
low- and high-level order differ versus only low-level order
differs from the comparison game (i.e., high-level order
matches in one condition). Above-chance accuracy would
reflect sensitivity to high-level order information, mean =
.513, t(95) = 0.978, ns.

Overall, both high- and low-level order influenced par-
ticipants’ similarity judgments, but judgments were more
strongly impacted by low-level order information.

Correlation Analysis

In an exploratory analysis, we further examined by-subject
correlations among sensitivity measures from our online
prediction and similarity judgment tasks (Figure 4). We
tested all possible correlations between all of the above
reported behavioral measures across both tasks, and cor-
rected for the false discovery rate (FDR) using Benjamini
and Hochberg’s (1995) procedure (q = 0.05; reported
p values and confidence intervals are uncorrected, but all
significant results survived FDR correction). We found that
measures of sensitivity to low-level order information
tended to be correlated with each other across tasks,
and the same was true for high-level order information.
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Specifically, sensitivity to low-level order on the online
prediction task was correlated with both measures of
low-level sensitivity on the similarity judgment task (“same
rules vs. different low”: r = .321, 95% CI [.128, .490], t =

3.281, p= .001; “two rule changes vs. same low”: r= .319,
95% CI [.127, .488], t = 3.264, p = .002). Sensitivity to
high-level order on early trials in gameplay on the online
prediction task was correlated with high-level sensitivity

Figure 3. Human similarity judgments. Participants were more sensitive to low- than high-level order information in their similarity judgments.
Box plot midlines show the means, +p < .1, *p < .05, **p < .01, ***p < .001.

Figure 4. Correlations among human behavioral measures. Pearson correlations surviving FDR correction (q < .05) outlined in black.
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on “same rules vs. different high” trials in the similarity
judgment task (r = .280, 95% CI [.084, .455], t = 2.824,
p= .006). Although there was a significant positive corre-
lation between one measure of online sensitivity to high-
level order and online sensitivity to low-level order (r =
.422, 95% CI [.242, .574], t = 4.517, p < .001), the purer
measure of high-level sensitivity (at the earliest points in
gameplay) did not correlate with low-level order information
(the measures in Figure 2B; r= .106, 95% CI [−.096, .300],
Bayes factor against r = .333 was .388), suggesting some
degree of decoupling of high- and low-level sensitivity.

Neural Network Model

Online Predictions

At 40 epochs of training (exposure to 320 games), the
model showed above-chance low-level sensitivity, mean =
.400, t(47) = 31.145, p < .001, and high-level sensitivity,
mean = .239, t(47) = 85.008, p < .001, in its predictions.
Like human participants, the model demonstrated
higher performance on our measure of low-level sensi-
tivity than on high-level sensitivity over the course of
learning (Figure 5B), difference by 40 rounds exposure =

.161, t(47) = 11.479, p < .001. To match the human data,
high-level sensitivity was computed at the earliest noncen-
ter trial in each game, but low-level sensitivity was com-
puted throughout the game (for the second location
among paired locations).

We also tested model high-level predictions at the start
of the second half of gameplay, with and without having
the model state informed by the first half of gameplay.
After 40 epochs of training, the model demonstrated
high-level sensitivity on the first noncenter trial of the
second half of gameplay, mean = .995, t(47) = 333.640,
p< .001. When the model was presented with four center
trials in the absence of any previous input, this sensitivity
was eliminated, mean = −.052, t(47) = −1.273, ns,
although it quickly adjusted to local context and always
made perfect high-level predictions by the second non-
center location pair.

Similarity Judgments

The model also showed a pattern of similarity judgments
that was qualitatively similar to human participants
(Figure 5C). Individual tests of above-chance accuracy

Figure 5. Modeling results. (A) Model architecture. (B) Average model performance on online prediction task over training. Shaded regions indicate
bootstrapped 95% confidence bands. (C) Model similarity judgments after 40 rounds of training. Box plot midlines show the means, **p < .01,
***p< .001, ****p< .0001. (D and E) Mean hidden activation trajectories during the course of gameplay for each of the eight games early in training
(D, eight rounds), and late in training (E, 40 rounds). Hidden activation trajectories start out roughly equidistant among the eight games but become
clustered by high- and low-level order rules over the course of training.
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and high- versus low-level bias are reported below for
each trial type: (b) Same rules (but different game iden-
tity / target image) versus game with different high- and
low-level order condition, mean = .553, t(47) = 9.682,
p < .001. (c) Same rules versus game with different
low-level order condition, mean = .533, t(47) = 5.273,
p < .001. (d) Same rules versus game with different
high-level order condition, mean = .516, t(47) = 3.143,
p = .003. (e) Both low- and high-level order differ versus
only high-level order differs from the comparison game.
Above-chance accuracy would reflect sensitivity to low-
level order information, mean = .530, t(47) = 7.759,
p < .001. (f ) Both low- and high-level order differ versus
only low-level order differs from the comparison game.
Above-chance accuracy would reflect sensitivity to high-
level order information, mean = .518, t(47) = 3.661,
p = .001. (g) High-level bias. One game matches the
comparison game on low-level order, and the other
matches the comparison game on high-level order,
mean = .479, t(47) = −4.645, p < .001.

Accuracy was higher on trials probing low-level than
high-level sensitivity (mean difference = .014, t(47) =
2.767, p = .008).

Model Hidden Activation Trajectories

We examined the model’s hidden activation trajectories
during gameplay for each game ID at both early (eight
rounds of games; Figure 5D) and late (40 rounds;
Figure 5E) stages of training. Trajectories are shown
branching out from the center of the plot as gameplay con-
tinues from the start to end of each game. Early in training,
the model represented individual games differently, and
all games were approximately equally dissimilar (relative
to changes over time within the game). Later in training,
the model grouped games by high- and low-level order
rule. Games that differed in their low-level order rule were
more distinct in activation space than games that differed
in their high-level order rule (mean of [[distance for differ-
ent low level rule – same low level rule] – [distance for
different high level rule – same high level rule]] = .396,
t(47) = 6.103, p < .001). Stronger representational
warping according to low-level order corresponds to the
stronger sensitivity to low-level order observed in the
model’s similarity judgments as well as online predictions.

Model activation trajectories changed gradually over the
course of gameplay, consistent with sensitivity to the dis-
tant past. To confirm this interpretation, we applied LRP
and found that model predictions were sensitive to input
at both near and far (>4) temporal lags (Appendix A).

DISCUSSION

In this study, we have shown that humans can rapidly learn
statistical information at slow (high-level) temporal scales
while performing a task that focuses on concurrent fast
(low-level) statistics. We have also captured aspects of

human behavior using a recurrent neural network trained
to predict immediate upcoming input, which recapitu-
lated patterns in human online predictions and similarity
judgments. The modeling results suggest that a common
learning mechanism and representational substrate can
capture information at multiple temporal scales. Both
the human and modeling results were consistent with pri-
oritization of learning for rapid timescale statistical rela-
tionships over slower timescale relationships and with
learning at the two levels unfolding in parallel.
Humans were able to learn context-dependent high-

level order information while performing a visuo-motor
task (whack-a-mole) in which they also learned low-level
order information. Notably, because rule-agnostic center
location trials were distributed throughout the game, par-
ticipants could not rely solely on the current visual stimu-
lus to correctly predict upcoming locations. Participants’
low-level order knowledgewas demonstrated both in their
online predictions during training and in their posttraining
similarity judgments. Their high-level order knowledge
was demonstrated in their online predictions (even when
based on the visual context alone) and on similarity judg-
ment trials that pitted amatch on high- and low-level order
against a high-level mismatch. It was also reflected in the
positive correlation between high-level order sensitivity
on the online prediction task (on early trials using visual
context) and the similarity judgment task. In both online
predictions and similarity judgments, there was evidence
for greater sensitivity to low-level statistics.
The fact that humanswere able to rapidly gain sensitivity

to high-level order statistics while performing a task
focused on learning low-level order statistics is nontrivial,
because the presence of low-level dependencies has been
suggested to interfere with learning of higher-level depen-
dencies in some domains (e.g., Newport & Aslin, 2004;
Gómez, 2002). Our findings are consistent with faster tem-
poral statistics being represented differently enough from
these kinds of slower temporal statistics during visuomo-
tor learning that they do not provoke interference. It may
be that high-level order information unfolding at longer
timescales and with more intervening trials (relative to
the long-distance dependencies employed in, e.g.,
Gómez, 2002, which involved separation by a single word)
allows more independence of learning across timescales.
There are other differences between the paradigms that
could be relevant, however, such as our high-level states
having looser order constraints on the trials nested within
them (i.e., four pairs of locations were presented in each
half of the game, and the order of the four pairs was ran-
domized each time a game was played). Gated recurrent
networks similar to our model should be able to handle
both the shorter and longer variants of long-distance
dependencies (Chung et al., 2014), and it would be inter-
esting for future simulation work to explore under what
timescales or other conditions interference may arise. A
degree of dissociability in the representations of slow
and fast temporal statistics is not incompatible with the
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idea that both could be acquired using a common learning
mechanism and brain region, as suggested by our model-
ing results. An individual region can learn to rely on some-
what distinct populations of neurons to process different
timescales of information.
A gated recurrent neural network with a single hidden

layer was able to learn statistical patterns unfolding at slow
and fast timescales, displaying sensitivity to both the
recent and more distant past, and approximated human
behavior in our paradigm. The model made online predic-
tions that matched human low- and high-level sensitivity
measures, with an advantage for low-level predictions,
and, like humans, demonstrated greater sensitivity to
low- than high-level order information in the similarity
judgment task. The close match to the human data at mul-
tiple timescales is notable given that our model was only
trained to predict the upcoming target location. Training
our model to predict the upcoming target location may
have resulted in a close match to our human data because
it matches our explicit predictive probe task, and/or
because it is consistent with a broader prediction-based
learning account of statistical learning (e.g., Schapiro et al.,
2013; Kiebel, Daunizeau, & Friston, 2008; Friston, 2005). It
is also interesting that our model was able to learn statisti-
cal dependencies at multiple timescales given that it uses a
single, unified learning mechanism. Our model learns
what temporal scales are relevant, rather than having them
explicitly parameterized, and accomplishes learning with a
single hidden layer. This is in contrast with models such as
the Hierarchical Autoencoders in Time model (Chien &
Honey, 2020), which employs a more constrained gating
mechanism that is modulated by layer depth and explicit
temporal integration parameters to learn statistics at mul-
tiple temporal scales. Our model’s success despite its flat
structure is consistent with prior demonstrations that sin-
gle layer models can capture complex multilevel temporal
dynamics (e.g., Botvinick, 2007; Botvinick & Plaut, 2004).
Our model also demonstrates that slow and fast time-

scale statistical relationships can be learned concurrently.
Although themodel did show bias toward enhanced learn-
ing of low-level / fast temporal statistics, it improved on
sensitivity measures for both fast and slow timescale statis-
tics simultaneously. This matches visual trends in the
human data (Figure 2B), although we were not powered
to examine this directly. Simultaneous learning at multiple
timescales is in contrast with suggestions that fast tempo-
ral relationshipsmust be learned before slower ones in the
motor (Krakauer et al., 2019) and language (Saffran &
Wilson, 2003) learning literatures. It is possible that previ-
ous findings may reflect a bias in the strength of (simulta-
neous) learning for statistics that span different temporal
scales, rather than a system constrained to learn rules at
different timescales in a strictly sequential fashion. The
lack of a strong correlation between human low- and
high-level sensitivity in the online prediction task is also
consistent with this. Future work will be needed to con-
firm differences in the learning rate for statistical learning

of input that spans different timescales, and confirm
whether information presented at different timescales
embedded in a single motor-perceptual stream is truly
acquired simultaneously in humans. In addition, more
work will be needed to tease apart the role of timescale
per se versus conceptual complexity and level of abstrac-
tion in explaining variance in learning trajectories for dif-
ferent temporal scales.

Our modeling results speak to how statistical depen-
dencies at multiple timescales may be learned in the brain.
We have previously developed a model of the hippocam-
pus that provides an account of its role in rapid statistical
learning (Schapiro, Turk-Browne, Botvinick, & Norman,
2017). In the model, the monosynaptic pathway to region
CA1 acts as a neural network with a single hidden layer,
employing distributed representations and a relatively fast
learning rate that allow it to effectively learn short time-
scale statistics quickly. Our current modeling results sug-
gest that such a single-hidden-layer system may be able to
concurrently handle longer timescale statistics. Temporal
dependencies are known to be encoded at multiple time-
scales in both neocortex (Baldassano et al., 2017; Hasson,
Chen, & Honey, 2015; Lerner, Honey, Silbert, & Hasson,
2011) and the hippocampus (reviewed in Davachi &
DuBrow, 2015). In both cases, there appears to be an ana-
tomical gradient of sensitivity to different timescales in dif-
ferent areas, with the hippocampus exhibiting increasing
sensitivity to long timescales moving more anteriorly/
ventrally along its long axis (Bouffard et al., 2023;
Tarder-Stoll, Baldassano, & Aly, 2023; Raut, Snyder, &
Raichle, 2020; Brunec et al., 2018). It may be that recurrent
machinery allowing sensitivity to longer timescale statistics
is increasingly present in more anterior/ventral segments
of the hippocampus and/or its inputs. Neocortical gradi-
ents of timescale dependency may emerge for longer term
forms of temporal knowledge.

In conclusion, humans are able to learn statistical infor-
mation at multiple timescales within a short period, and
their behavior can be effectively modeled using recurrent
neural networks. Rather than learning rapid timescale sta-
tistics as a prerequisite for learning slower statistics, our
model suggests that statistical information can be learned
across multiple timescales simultaneously and via a shared
mechanism and substrate. Although we may acquire rapid
temporal regularities more readily than slowly evolving
ones, thework demonstrates that learning one is not always
a prerequisite for or barrier against learning the other.

APPENDIX A: LAYERWISE
RELEVANCE PROPAGATION

To probe how far into the past input influences model
predictions for the upcoming location, we used an
explainable AI decomposition method called Layerwise
Relevance Propagation (LRP) (Bach et al., 2015). In LRP,
relevance scores are computed and assigned to hidden
units and then to upstream input units, on a trial-by-trial
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basis. Scores are computed for simple units in linear pro-
portion to magnitude of excitatory and inhibitory inputs
and their weights. Specifically:

R l;lþ1ð Þ
i←j ¼

Zij

Zj þ ε
⋅ R lþ1ð Þ

j Zj ≥ 0

Zij

Zj− ε
⋅ R lþ1ð Þ

j Zj < 0

8>>><
>>>:

(1)

where R l;lþ1ð Þ
i←j refers to the relevance of input unit i in

layer l to the output activation of unit j in layer l + 1,
zij is the linear activation of unit i times the connection
weight from unit i to j, zj is the linear activation of unit j,

ε is a small positive stabilization constant, and R l;lþ1ð Þ
j is

the relevance assigned to unit j in layer l + 1. In the case
of recurrent neural networks, scores are assigned in a
similar manner but account for the multiple input
matrices and weight transformations internal to each
unit. Relevance was not redistributed to bias parameters
for the purposes of this analysis.

LRP has some limitations; for example, relevance heat-
maps contain noise and nondiscriminative information
when applied to convolutional neural networks trained
on image classification (Jung, Han, & Choi, 2021). How-
ever, its simple formulation allows it to be applied to a
variety of network architectures. In the case of recurrent
neural networks, relevance propagation can proceed not
only across layers, but also backward through time, shed-
ding light on the relative contributions of points in the
past to the current prediction. For this reason, we have
assessed the “relevance” assigned to points at various lags
in the past as an approximation of the model’s forgetting
curve. Because relevance scores can be either positive
(suggesting excitation) or negative (suggesting inhibition),
we took the sum over input units of the absolute values of
the relevance scores (broken down into “location” and
“game ID” input groups) for all lags during gameplay on

a large test set (6400 games; Figure A1). Ninety-five per-
cent bootstrapped confidence intervals (n= 3000 simula-
tions) were computed across 48 model instances.
The model assigns relevance preferentially to points in

the recent past. However, some relevance is assigned to
both location and game ID inputs going back many trials
into the past.
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